
PANIC training materials
Release 0.9

Piotr Goryl (S2Innovation), Tango Community

Feb 22, 2021

CONTENTS:

1 PANIC ALARM SYSTEM 1
1.1 References . 1
1.2 Architecture . 1
1.3 Alarm states . 4

2 PyAlarm Properties Quick Reference 7
2.1 Global Properties . 7
2.2 Class Properties . 7
2.3 Device Properties . 8

3 Annunciators/Recivers 11
3.1 Actions . 12
3.2 PhoneBook . 12
3.3 Global Recivers . 13

4 Notes on alarms formulas 15
4.1 Tango names resolving . 15
4.2 Special Keys/Macros . 15

5 Integration with external systems 23
5.1 Mail . 23
5.2 SMS . 24
5.3 A Text Talker . 25
5.4 eLog or other web-based systems . 25
5.5 Knowledge database . 26

6 MAX-IV ELK stack application 29
6.1 A demo of MAX-IV deployment . 29
6.2 MAX-IV app description . 30
6.3 Deployment . 30

7 PANIC source-code 33
7.1 alarmapi.py . 33
7.2 properties.py . 33
7.3 PyAlarm.py . 34

8 Deployment and configuration 35
8.1 PyAlarm dependencies . 35
8.2 PANIC GUI dependencies . 35
8.3 Number of devices/device servers . 36
8.4 Timing configuration . 36

i

8.5 Exceptions handling configuration . 38
8.6 UseTaurs . 38
8.7 Naming conventions . 38

9 PANIC GUI 39
9.1 PANIC GUI description and goals . 40
9.2 GUI overview . 40
9.3 Alarm edit/details panel . 46
9.4 Configuration of the alarms list . 58
9.5 Context menu . 65
9.6 Alarms management . 73
9.7 Top bar menu . 73

10 Alarm philosophy 79
10.1 Alarm philosophy . 79
10.2 Alarm system requirements specification (ASRS) . 80

11 Indices and tables 81

ii

CHAPTER

ONE

PANIC ALARM SYSTEM

The PANIC is software for building an alarm management system. It is developed mainly by ALBA synchrotron,
however, several laboratories proposed some extensions or alternative solutions.

1.1 References

At this moment source code is kept on the GitHub: https://github.com/tango-controls/PANIC, however, it will be
migrated to the GitLab tango-controls organization, soon.

Documentation: https://tango-controls.readthedocs.io/en/latest/tools-and-extensions/alarm/panic.html?highlight=
PANIC

Papers: There are several publications referencing PANIC available on JACoW

Forum: There is a dedicated forum thread on Tango Controls: https://www.tango-controls.org/community/forum/c/
general/development/panic-the-alba-alarm-system/?page=1

1.2 Architecture

Below is a short introduction to PyAlarm system architecture. Detail information is available in the online documen-
tation.

A typical deployment of the PANIC system contains (in addition to Tango Controls):

• PyAlarm device servers

• PANIC GUI

• SNAP archiving

There can be multiple PyAlarm devices provided by multiple PyAlarm servers. A PyAlarm device keeps alarms
configuration in its properties. Each PyAlarm device serves a set of alarms (alarms are assigned to a PyAlarm device).

A PyAlarm device is subscribing or polling tango attributes which appear in its alarms formulas (part of alarm config-
uration). Alarm formulas are periodically evaluated. If the evaluation result is True alarm is triggered (the formula is
detecting an abnormal condition, according to IEC-62682). An abnormal condition is defined when the alarm formula
evaluation results in True.

PyAlarm devices play the Alarm Log role in the Alarm System.

If configured so, a PyAlarm stores alarm state changes as entries in a SNAP database. The entry also contains values
of tango attributes involved in the formula evaluation.

SNAP database is the Alarm historian role in the Alarm system.

1

https://github.com/tango-controls/PANIC
https://tango-controls.readthedocs.io/en/latest/tools-and-extensions/alarm/panic.html?highlight=PANIC
https://tango-controls.readthedocs.io/en/latest/tools-and-extensions/alarm/panic.html?highlight=PANIC
https://search.cern.ch/Pages/results.aspx?k=+domain%3Daccelconf%2Eweb%2Ecern%2Ech+PANIC%20%20url%3Aaccelconf%2Fica99%20url%3Aaccelconf%2Fica01%20url%3Aaccelconf%2Fica03%20url%3Aaccelconf%2Fica05%20url%3Aaccelconf%2Fica07%20url%3Aaccelconf%2Ficalepcs2009%20url%3Aaccelconf%2Ficalepcs2011%20url%3Aaccelconf%2FICALEPCS2013%20url%3Aaccelconf%2FICALEPCS2015%20url%3Aaccelconf%2Ficalepcs2017%20url%3Aaccelconf%2Ficalepcs2019%20FileExtension%3Dpdf%20-url%3Aabstract%20-url%3Aaccelconf/jacow
https://www.tango-controls.org/community/forum/c/general/development/panic-the-alba-alarm-system/?page=1
https://www.tango-controls.org/community/forum/c/general/development/panic-the-alba-alarm-system/?page=1

PANIC training materials, Release 0.9

Fig. 1.1: PANIC system architecture

Fig. 1.2: PyAlarm internals

2 Chapter 1. PANIC ALARM SYSTEM

PANIC training materials, Release 0.9

Fig. 1.3: Alarms evaluation cycle

1.2. Architecture 3

PANIC training materials, Release 0.9

PANIC GUI is gathering and managing information from all PyAlarm devices. It provides the HMI role according to
the IEC norm.

There could be additional components in the system, including Annunciators (mail system, SMS system, . . .) which
are Alarm system’s External systems.

Fig. 1.4: Information flow in the PANIC system

1.3 Alarm states

The PANIC follows IEC62682 standard for alarm states.

Each alarm individaully can be in one of the following states:

• Normal (NORM) - the condition for the alarm is not active (formula evaluation has returned False),

• Uncacknolwdged (UNACKED) - the alarm condition has become active (there is an alarm sitution than needs an
operator reaction),

• Acknowledged (ACKED) - the alarm (the condition) is still active but an operator has acknowledged it (react,
start solving the alarm),

• Return to Normal (RTNUN) - alarm condition recoverd (is not active) but the alarm has not been automaticaly
reset or acked by any operator,

• Shelved (SHLVD) - temporary disabled by an operator to focus on more important alarms,

• Suppressed by design (DSUPR) - notification disabled by the system, for example during startup to avoid alarms
flooding in startup transient states,

4 Chapter 1. PANIC ALARM SYSTEM

PANIC training materials, Release 0.9

Fig. 1.5: Alarms states

1.3. Alarm states 5

PANIC training materials, Release 0.9

• Out of sevice (OOSRV) - the alarm is defined in the system, but cannot be evaluated at this moment (i.e. a
component which evaluates the alarm is switched off).

1.3.1 Working with alarms

Fig. 1.6: Operation with an alarm

Typical (end recommended) operation of an alarm is as follows:

• The alarm systems detects an alarm condition and trigger the alarm (the alarm changes its state from NORM to
UNACKED),

• An operator notices the alarm (via a GUI or via other means of annunciation),

• If the operator is going to solve the alarm situatiun, he acknowledges the alarm (the alarm state becomes
ACKED,so another operators knows that someone is dealing with the issue),

• The operator solves the alarm cause (the alarm state changes to RTNUN),

• The operator or the system itself resets the alarm (the alarm state changes back to NORM).

6 Chapter 1. PANIC ALARM SYSTEM

CHAPTER

TWO

PYALARM PROPERTIES QUICK REFERENCE

All properties are listed in panic/properties.py file: https://github.com/tango-controls/PANIC/blob/master/panic/
properties.py

2.1 Global Properties

These properties are Tango free properties under PANIC group. Global Properties are used by PyAlarm and/or to store
some GUI configuration.

PhoneBook: List of receiver aliases, declared like: %USER:user@accelerator.es;SMS:+34666555666,

2.2 Class Properties

Class properties are used applies to all PyAlarm devices.

SMSConfig: Arguments for sendSMS command,

SMSMaxLength: Maximum length of SMS messages,

SMSMaxPerDay: Maximum SMS messages per day,

MailMethod: Define mail method. Can be set to mail or smtp[:host[:port]],

MailDashRoption: If not empty, mail command is invoked with -r option to specify from_address (instead of -S
from=...),

FromAddress: Address that will appear as Sender in mail and SMS,

AllowedActions: List of OS commands which alarms `ACTION`s are allowed to execute,

StartupDelay: Number of seconds that PyAlarm will wait before starting to evaluate alarms,

PanicAdminUsers: Users authorized to modify the Alarms (apart of receivers),

PanicUserTimeout: Number of seconds to keep user login in panic GUI,

UserValidator: Module.Class to be used to validate admin user/passwords,

GlobalReceivers: Receivers to be applied globally to all alarms. Declared as:

FILTER:receiver,ACTION(MESSAGE:. . .), like: *VC*:vacuum@cells.es,ACTION(RESET:command,t/
t/t/stop),

AlarmWikiLink: An URL to a WiKi page, where one can find more info on alarms. If set it will appear on the
AlarmEditor widget. The URL may contain a key {%ALARM%} which is then substituted with an alarm tag. Example:
http://wiki.cps.uj.edu.pl/alarms/{%ALARM%},

7

https://github.com/tango-controls/PANIC/blob/master/panic/properties.py
https://github.com/tango-controls/PANIC/blob/master/panic/properties.py

PANIC training materials, Release 0.9

2.3 Device Properties

2.3.1 Alarm state/cycle related

Enabled: If False forces the device to Disabled state and avoids messaging; if an integer number (N), it will last
Disabled for N seconds after Startup; if a python formula is written it will enable/disable the device according to its
evaluation.

AlarmThreshold: Minimum number of consecutive formula evaluation to True before any alarm is triggered,

AlertOnRecovery: It can contain ‘email’ and/or ‘sms’ keywords to specify if an automatic message must be
sent in case of alarm returning to a safe level.

PollingPeriod: Period in SECONDS to poll all not event-driven attributes and to run fromulas evaluation. @TODO
for convenience any value above 300 will be divided by 1000,

Reminder: If a number of seconds is set, a reminder mail will be sent while the alarm is still active, if 0 no Reminder
will be sent,

AutoReset: If a number of seconds is set, the alarm will reset if the conditions are no longer active (RTN) for the
specified time,

RethrowState: Whether exceptions in State reading will activate the Alarm,

RethrowAttribute: Whether exceptions in Attribute reading will activate the Alarm,

IgnoreExceptions: Value can be False/True/NaN to return Exception, None or NotANumber in case of read_attribute
exception,

2.3.2 Historian related properties

UseSnap: If false no snapshots will be triggered (unless specifically added to annunciators with SNAP keyword),

CreateNewContexts: It enables PyAlarm to create new contexts for alarms if no matching context exists in the
database,

2.3.3 Logging of alarms

LogFile: A file where alarms are logged, like /tmp/alarm_$NAME.log. One can use keywords: $DEVICE,
$ALARM, $NAME, $DATE. If version>6.0 a FolderDS-like device can be used for remote logging: tango://test/
folder/01/$ALARM_$DATE.log,

HtmlFolder: File where alarm reports are saved,

FlagFile: File where a 1 or 0 value will be written depending if there is any active alarm or not. This file can be used
by other notification systems,

8 Chapter 2. PyAlarm Properties Quick Reference

PANIC training materials, Release 0.9

2.3.4 PyAlarm device instance configuration

LogLevel: stdout log filter, like INFO, DEBUG, ..,

StartupDelay: Number of seconds that PyAlarm will wait before starting the evaluation loop. For this time, all alarms
handled by the device will have state OOSRV (out of service),

EvalTimeout: Timeout for read_attribute calls, in milliseconds,

UseProcess: To create new OS processes instead of threads (experimental),

UseTaurus: Use Taurus to connect to devices instead of plain PyTango (it is recommended to set it to True).

2.3. Device Properties 9

PANIC training materials, Release 0.9

10 Chapter 2. PyAlarm Properties Quick Reference

CHAPTER

THREE

ANNUNCIATORS/RECIVERS

PyAlarm device can invoke several actions on alarm state change:

• Send an email: user.name@domaing.us,

• Send an SMS: SMS:+44010101010,

• Call a tango command: ACTION(alarm:command, tan/go/device/command, argumets),

• Set a value of a tango attribut: ACTION(acknowlegde:attribute,tan/go/device/attribute,
value),

• Call an operating system call (command): ACTION(reset:system, '/usr/local/beep'),

The list of anouncianttions for an alarm is defined as a semicolon(;) divided list set in AlarmReceivers property. The
property format is:

ALARM_NAME_1:LIST;OF;RECEIVERS_1
ALARM_NAME_2:LIST;OF;RECEIVERS_2

Fig. 3.1: Annunciation infrastructure

11

PANIC training materials, Release 0.9

3.1 Actions

Actions (ACTION(...)) can be used to annunciate the alarm or to invoke some operations.

Actions can be invoked for the following events:

• ALARM - an alarm is triggered,

• ACKNOWLEDGED - an operator acknowledged the alarm,

• RECOVERED - the alarm condition become not active (formula evaluation become False),

• REMINDER - not acknowledged alarm reminder is being sent,

• AUTORESET - the alarm change automaticaly to Normal state (not active),

• RESET - an operator reset the alarm

• DISABLED - an operator disabled the alarm

For an arguments for command or variable set actions one can use the following variables:

• $ALARM/$TAG/$NAME : Alarm name

• $DEVICE : PyAlarm name

• $DESCRIPTION : Description text

• $VALUES : last values evaluated for that alarm

• $SNAP : last values stored for that alarm

• $REPORT : full report sent when the alarm was raised

• $DATE/$DATETIME : current time as YYYYMMDD_hhmm

• $MESSAGE : type of alarm event (RESET,ALARM,REMINDER,. . .)

• $JSON : all the previous fields in a JSON dictionary

These will be substituted with the value upon action invoking.

For operating system calls, list of commands to excute is limited to what is specified in the AllowedActions property.

Actions can be used to integrate external systems like a TextTalker or Teams.

3.2 PhoneBook

The Phonebook is defined as multientries Phonebook free property in PANIC section of free properties. Each line
defines one named resceivers list: %RECIVER_NAME: LIST;OF;RECEIVERS, for example:

%PIOTR GORYL:piotr.goryl@s2innovation.com;SMS:0048795794004

Then, a %RECIVER_NAME can be used as a key in AlarmReceivers property.

12 Chapter 3. Annunciators/Recivers

PANIC training materials, Release 0.9

3.3 Global Recivers

It is possible to define a default list of receivers/actions for a set of alarms. The set of alarms is defined by a regular
expression. The global receivers list is defined in a PyAlarm class property:

GlobalReceivers: Receivers to be applied globally to all alarms. Declared as: FILTER:receiver,
ACTION(MESSAGE:...), for example:

VC:vacuum@cells.es,ACTION(RESET:command,t/t/t/stop)

3.3. Global Recivers 13

PANIC training materials, Release 0.9

14 Chapter 3. Annunciators/Recivers

CHAPTER

FOUR

NOTES ON ALARMS FORMULAS

Alarm conditions are provided as python like expressions, which are then calculated by the TangoEval. The TangoEval
is an extended python eval.

Detail information and examples of formulas can be found int the PANIC documentation, here:

• Alarm syntax recipes,

• Custom alarms,

• Example formulas,

4.1 Tango names resolving

The main enhancement to the standard python eval is the direct resolving of tango objects.

If one uses a string like the following (without quotes):

some/device/name{/attribute_name}{.value/all/time/quality/delta/exception}

(items in curly brackets are optional), the TangoEval resolve the string to:

• Tango some/device/name State, if the only device name is used,

• An attribute value indicated by some/device/name/attribute_name, if the string provides the attribute_name,

• An attribute property (value/all/time/quality/delta/exception), if it is provided in the string,

Please refer to this documentation

4.2 Special Keys/Macros

When providing formulas, the following special kays

• DEVICE: Returns PyAlarm device name

• DOMAIN, FAMILY, MEMBER: Parts of the device name

• ALARMS: Alarms managed by this device

• PANIC: API containing all declared alarms

• t: time since the device was started

• T(. . .): string to time

• str2time(. . .): string to time

15

https://tango-controls.readthedocs.io/projects/panic/en/latest/PyAlarmUserGuide.html#alarm-syntax-recipes
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/CustomAlarms.html
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/AlarmExamples.html
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/AlarmExamples.html#getting-tango-state-attribute-value-quality-time-delta-in-formulas

PANIC training materials, Release 0.9

• now, NOW(): current timestamp

• DEVICES: instantiated devices

• DEV(device): DeviceProxy(device)

• NAMES(expression): Finds all attributes matching the expression and return its names.

• CACHE: Saved values

• PREV: Previous values

• READ(attr): TangoEval.read_attribute(attr)

• FIND(expression): Finds all attributes matching the expression and return its values.

• GROUP(. . .)

For details, pleas look to the links to Examples provided in the PANIC documentation

4.2.1 Current timestamp - NOW()

Time: returns the epoch in seconds of the last value read

epoch is a date and time from which a computer measures system time

sys/tg_test/1/State.time < (now-60)

4.2.2 CACHE

This will trigger alarm if ALL values in the cache are equal, it is NOT the same as Delta because it checks only the
first and last values:

not (lambda l:max(l)-min(l))([v.value for v in CACHE['elin/focus/b1coil/Position']])

4.2.3 String to time - T(. . .)

A temporal condition can be achieved using the T() macro in the formula. To re-enable it after a maintenance period:

T() < T('2020-01-09') AND (elin/v-rv/1/State != CLOSE)

4.2.4 FIND

((elin/focus/b1coil/Position > 55) OR (elin/focus/b2coil/Position > 55) OR elin/focus/
→˓b3coil/Position > 55) OR (elin/focus/b4coil/Position > 55))

is equal to:

any([s.value > 55 for s in FIND(elin/focus/b*coil/Position)])

16 Chapter 4. Notes on alarms formulas

https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/CustomAlarms.html#accessing-pyalarm-values-cache
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/AlarmExamples.html#enabling-search-expression-matching-and-list-comprehensions
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/AlarmsHierarchy.html#alarm-group
https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/AlarmExamples.html

PANIC training materials, Release 0.9

Fig. 4.1: NOW()

4.2. Special Keys/Macros 17

PANIC training materials, Release 0.9

Fig. 4.2: CACHE

18 Chapter 4. Notes on alarms formulas

PANIC training materials, Release 0.9

Fig. 4.3: T(. . .)

4.2. Special Keys/Macros 19

PANIC training materials, Release 0.9

Fig. 4.4: FIND()

20 Chapter 4. Notes on alarms formulas

PANIC training materials, Release 0.9

4.2.5 Grouping Alarms in Formulas

The proper way of grouping the alarms

ALARM_1: just/my/tango/attribute_1
ALARM_1: just/my/tango/attribute_2

then:

ALARM_1_OR_2: ALARM_1 or ALARM_2

Example:

(((elin/v-rv/0/State != CLOSE) OR (elin/v-rv/1/State != CLOSE) OR (elin/v-rv/2/State !
→˓= CLOSE) OR (elin/v-rv/3/State != CLOSE) OR (elin/v-rv/4/State != CLOSE)) AND
→˓((elin/focus/b1coil/Position > 55) OR (elin/focus/b2coil/Position > 55) OR (elin/
→˓focus/b3coil/Position > 55) OR (elin/focus/b4coil/Position > 55)))

is equal to:

VALVE_LINAC_TEST_ALARM:((elin/v-rv/0/State != CLOSE) OR (elin/v-rv/1/State != CLOSE)
→˓OR (elin/v-rv/2/State != CLOSE) OR (elin/v-rv/3/State != CLOSE) OR (elin/v-rv/4/
→˓State != CLOSE))

Coil_Position_Linac_Alarm:((elin/focus/b1coil/Position > 55) OR (elin/focus/b2coil/
→˓Position > 55) OR (elin/focus/b3coil/Position > 55) OR (elin/focus/b4coil/Position >
→˓ 55))

(VALVE_LINAC_TEST_ALARM AND Coil_Position_Linac_Alarm)

4.2. Special Keys/Macros 21

PANIC training materials, Release 0.9

Fig. 4.5: Grouping

22 Chapter 4. Notes on alarms formulas

CHAPTER

FIVE

INTEGRATION WITH EXTERNAL SYSTEMS

Integration with external systems uses PANIC built-in annunciation capabilities:

Fig. 5.1: Annunciation infrastructure

5.1 Mail

To enable PANIC to send emails, one needs to configure the following PyAlarm class properties:

5.1.1 MailMethod

It has to be set either to mail or smtp[:host[:port]].

If it is set to mail, PyAlarm devices will call os command mail to send emails. This option requires that all machines
where PyAlarm device servers are running have mail available and properly configured (with sendmail or postfix, for
example).

If it is set to smtp, PyAlarm devices will send emails with use of a specified (host, port) SMTP server.

23

PANIC training materials, Release 0.9

5.1.2 FromAddress

This property specifies sender address that will appear as Sender in mail and SMS.

5.1.3 MailDashRoption

On some systems mail does not support default -S option. In that case, it is possible to require calling the mail
with -r option to specify from address. One can do it by setting the MailDashRoption property value to the sender
address.

If the property is empty or not defined, -r is not used.

5.2 SMS

Sending SMS is possible with the use of an external hardware gateway or service. It requires an smslib.Then the
configuration is provided with the following properties:

• SMSConfig: Arguments for sendSMS command (username and password), formatted as the fol-
lowing

username:password,

• SMSMaxLength: Maximum length of SMS messages,

• SMSMaxPerDay: Maximum SMS messages per day,

5.2.1 smslib

To enable sending of SMSs there should be a custom smslib library installed on all machines where PyAlarm device
servers are running. This library needs to be provided/developed by the site using PyAlarm. An example library is
available here: https://github.com/S2Innovation/lib-s2i-smsdev

The library shall be a python package (or module) named smslib defining (and exposing) a class called SMSThread
which inherits from threading.Thread.

The SMSThread shall have a constructor with the following signature:

def __init__(self, message='', dest='', username='', password='', source=''):

, a PyAlarm is initalising an SMSThread object with the following:

• message set to text to be sent,

• dest set to list of phone numbers,

• username and password paresed from the SMSConfig property,

• source set according to the fromAddress property,

After the SMSThread object is initialised, the PyAlarm is starting the thread, so sending of SMSs shall be done def
run(self): method.

Note: The SMS sending could also be done with an ACTION receiver with use of an SMS sending device server or
command/program.

Also the smslib may use a tango device to send an SMS. See the following modules used at SOLARIS:

24 Chapter 5. Integration with external systems

https://github.com/S2Innovation/lib-s2i-smsdev

PANIC training materials, Release 0.9

• https://github.com/S2Innovation/lib-s2i-smsdev

• https://github.com/S2Innovation/ds-s2i-smsgateway

SOLARIS is using a Moxa GSM gateway, which provides an HTTP form to send SMSes.

5.3 A Text Talker

A text talker can be integrated with the use of an ACTION receiver.

Assuming that there is a text talker tango device alarm/notifications/talker with a command talk getting a text to speak
as the argin, one can set up the following:

Phonebook entry:

%TALKER: ACTION(alarm:command,alarm/notifications/talker/talk, "There is an alarm " +
→˓$DESCRIPTION)

Then adding %TALKER to an alarm annunciators/receivers list or to the GlobalReceivers property, will make the talker
speak a message when an alarm triggers.

5.4 eLog or other web-based systems

To send notifications or to create an entry in a web-based system, one can use a tango command ACTION with a tango
device in the middle.

As the web applications may have a limit on the number of concurrent connections or entries, it is recommended to
buffer/filter the entries in a device server to prevent flooding the app in case of many alarms are triggered.

5.4.1 PSI eLog integration example

In addition to server-side eLog daemon, PSI elog provides a command-line tool called elog, which enables adding
eLog entries from a command-line. It uses a set of command-line arguments to specify host, port, username and
password to determine how the eLog can be accessed as well as a logbook name, entry’s tags and content.

The elog command is used by an ELogSender tango device to send entries to eLog server.

elog -h <hostname> [-p port] [-d subdir]
Location where elogd is running

-l logbook Name of logbook
-s Use SSL for communication
[-v] For verbose output
[-w password] Write password defined on server
[-u username password] User name and password
[-f <attachment>] Up to 50 attachments
-a <attribute>=<value> Up to 50 attributes
[-r <id>] Reply to existing message
[-q] Quote original text on reply
[-e <id>] Replace existing message
[-x] Suppress email notification
[-n 0|1|2] Encoding: 0:ELcode,1:plain,2:HTML
-m <textfile>] | <text>

5.3. A Text Talker 25

https://github.com/S2Innovation/lib-s2i-smsdev
https://github.com/S2Innovation/ds-s2i-smsgateway
https://github.com/S2Innovation/ds-s2i-elog-sender

PANIC training materials, Release 0.9

More info is available at PSI eLog webpage

The ELogSender device has a command create_entry used by an ACTION annunciator to put an entry into a queue of
entries to be sent to eLog. The queued entries are sent to the eLog at a constant interval. The queue size is limited
to defined (i.e. 20) number of entries. If the queue is full, any new create_entry calls are discarded (a number of
discarded entries are registered). This mechanism prevents the eLog server from overload in case of alarms’ flood
(multiple alarms triggered in a short time).

A way how the entry is created from a create_entry argin is defined by ELogSender device properties. These properties
provide matching between elements of argin (which is DevVarString) and eLog fields (called attributes).

An example configuration may look like the following:

ELogSender class properties:

• ArgumentParsers: . (this privides addtional variables to be used in eleog message, experimental),

• ELogAdditionalArgs: (this can be set to -u pylaram elog_password to provide pyalarm credentials to
eLog),

• ELogCommand: /usr/local/bin/elog (where to find the elog command),

• ELogHost: localhost (a hostname or IP where the eLog server is running),

• ELogPath: (an URL path of the eLog),

• ELogPort: 8080 (a tcp prot of the eLog),

• MaxQueueMessage: There is/are {%NumberOfRejectedEntries%} alarm(s) skipped
to avoid flooding. {%n%} (this provides a way to include information about rejected entries in a
logbook entry),

• MaxQueueSize: 10 (entries que limit, if the que contains MaxQueueSize of entries, new one will be discarded,
not sent to the eLog server),

alarm/ctl/elogsnd1 device properties:

• EntryAttributes: Type={%3%},Category={%4%},Subject={%1%}-{%2%},Author=PyAlarm

• EntryMessage: {%MaxQueueMessage%} {%0%}

• LogbookName: demo

PANIC/PhoneBook free property entry: %LOGBOOK:ACTION(alarm:command,alarm/ctl/elogsnd1/
create_entry,$REPORT,$NAME,$DESCRIPTION,'Routine','General')

PyAlarm/GlobalReceivers class property entry: *:piotr.goryl@s2innovation.com,%LOGBOOK

This will result in with entries looking as follows:

5.5 Knowledge database

A knowledge database link is configured with the AlarmWikiLink PyAlarm class property:

AlarmWikiLink: An URL to a WiKi page, where one can find more info on alarms. If set it will appear on the
AlarmEditor widget. The URL may contain a key {%ALARM%} which is then substituted with an alarm tag. Example:
http://wiki.cps.uj.edu.pl/alarms/{%ALARM%},

26 Chapter 5. Integration with external systems

https://elog.psi.ch/elog/userguide.html

PANIC training materials, Release 0.9

Fig. 5.2: An example eLog entry created from a PyAlarm

5.5. Knowledge database 27

PANIC training materials, Release 0.9

28 Chapter 5. Integration with external systems

CHAPTER

SIX

MAX-IV ELK STACK APPLICATION

For a description of an example installation of MAX-IV like deployment, see the training VM documentation.

The integration with ELK stack let provide easy to configure visualisation dashboards as well as data analysis tools.

One can use it to provide info on KPIs like alarm’s frequency, average, maximum and minimum response time, and
so.

Fig. 6.1: An example Kibana dashboard showing alarm data

6.1 A demo of MAX-IV deployment

The demo is available on the training virtual machine. It is disabled from automatic startup to prevent resources
consumption.

To start the demo, please run the script:

/home/panic/demo/maxiv/start.sh

The script starts the MAX-IV device server and services. The startup asks for sudo password.

29

https://gitlab.com/s2innovation-partners/soleil/panic-vm/-/blob/master/docs/vm-design.md

PANIC training materials, Release 0.9

After the services and MAX-IV PyAlarm is started, you can access the Kibana with a browser (i. e. firefox) on
address: http://training:5601.

6.2 MAX-IV app description

MAX-IV uses its version of PyAalrm extended with a facility to send alarms’ events to the Logstash/Elasticsearch.
The DS is based on an old PyAlarm version (4.22.13).

Note: There is a related pull request sent bt MAX-IV for PANIC mainstream repository. Due to in-meantime advance
in PANIC development, the PR cannot be easily merged. It requires a bit of rewriting.

A MAX-IV device sends alarm information, packed into a JSON object to a Logstash server listening on the 5959
TCP port and address provided by its LogStash property.

The Logstash push the data to the Elsticsearch database according to its configuration.

The data available in the Elasticsearch database can be browsed with the Kibana web application.

The Kibana provides tools for data browsing, filtering, aggregating and visualising. Please reffer to Kibana documen-
tation

6.3 Deployment

To make the setup work one need to:

• install and configure ELK stack:

– Elasticsearch,

– Logstash,

– Kibana,

• provide a dedicated logstash configuration file,

• Install MAX-IV version of the PyAlarm device server, configure a PyAlarm device and set its LogStash prop-
erty.

6.3.1 Logstash configuration example

To let PyAlarm send alarms to the Elasticsearch, a logstash configuration file (pipeline) has to be provided, so the
Logstash accepts a JSON data on 5959 TCP port. The configuration file may look like the following:

input {
tcp {

port => 5959
codec => json

}
}
output {

elasticsearch {
hosts => ["localhost:9200"]
index => "tango-alarms-%{+YYYY.MM.dd}"

(continues on next page)

30 Chapter 6. MAX-IV ELK stack application

http://training:5601
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/elastic-stack

PANIC training materials, Release 0.9

(continued from previous page)

document_type => "alarm"
}

}

6.3. Deployment 31

PANIC training materials, Release 0.9

32 Chapter 6. MAX-IV ELK stack application

CHAPTER

SEVEN

PANIC SOURCE-CODE

PANIC is provided as a python package panic.

The package contains the following essential modules:

• alarmapi.py,

• properties.py,

• ds/PyAlarm.py,

• gui/gui.py,

and other supporting modules used by the above.

Below are a few notes about the source code.

7.1 alarmapi.py

The alarmapi module provides definitions of the following classes:

• Alarm, which keeps alarm states and let access to alarm attributes,

• AlarmDS, which provides an interface to manage PyAlarm devices,

• AlarmAPI, which gives access to Alarms and AlarmDS objects,

Both the PyAlarm device servers and PANIC GUI use the AlarmAPI to manage alarms.

Example of the usage of AlarmAPI is available in the PANIC documentation.

7.2 properties.py

The module properties.py provides definitions of all Tango properties related to the PANIC system. It is an excellent
place to start when looking for information about configuration properties.

Lists of properties defined in this module are used by alarmapi, PyAlarm and GUI.

33

https://tango-controls.readthedocs.io/projects/panic/en/latest/recipes/PanicAPI.html

PANIC training materials, Release 0.9

7.3 PyAlarm.py

PyAlarm.py is the implementation of PyAlarm device server/class.

Below are important points about the structure of the sources:

• The source code starts with the import of modules. Optional modules (PyTangoArchiving, smslib) are loaded
witing try/except clauses. If the PyAlarm cannot load a module (the module is not present), SNAP and/or SMS
functionalities are set to disable.

• AlarmHook class is defined but not used.

• In addition to tango device interface definitions, there are the following important methods and objects:

– updateAlarms is providing the main evaluation loop. It is started in a dedicated thread by start
method,

– process_alarm, where alarm state evaluation happen (call of Eval over a formula, state update). it is
called by the above,

– send_alarm, used by the above to annunciate a change of alarm state. The send_alarm
uses other methods (SendTelegram, SendSMS, trigger_snapshot,``SendMail``, SaveHtml,
trigger_action) to provide annunciations according to the configuration of the alarm,

In case of doubts or missing information on how a particular feature of the PANIC system work, it is worth to look
into the source code of the methods mentioned above.

34 Chapter 7. PANIC source-code

CHAPTER

EIGHT

DEPLOYMENT AND CONFIGURATION

This section provides hints on deployment and PyAlarm devices configuration for SOLEIL.

8.1 PyAlarm dependencies

To start the PyAlarm the following python packages have to be installed:

• MySQL-python (this package is provided with rpm sudo yum install MySQL-python),

The rest of the packages may be installed with pip tool:

• numpy

• pytango

• fandango

• PyTangoArchiving

• taurus

• panic

, when installed with pip, it will install all required dependencies as well.

Note: CentOS 7 needs the EPEL repository to install the pip tool (sudo yum install python-pip).

On some systems (i.e. CentOS 7), it may be required to upgrade the default pip to the most recent version before
installing the packages above:

sudo pip install --upgrade pip
sudo pip install --upgrade setuptools

8.2 PANIC GUI dependencies

The GUI requires few additional (in respect to PyAlarm) packages:

sudo yum install python-pyqt4
sudo yum install python-guiqwt

35

PANIC training materials, Release 0.9

8.3 Number of devices/device servers

At SOLEIL, tango devices and device servers are grouped in subsystem-dedicate VMs.

It is then recommended to make PyAlarm device server available on all (virtual) machines either by providing python
packages via shared NFS or local installation on the machines.

Then on all subsystem VM, there should be at least two PyAlarm devices.

It is suggested that a dedicate PyAlarm server instance provides each device (one device per server), a threading model
of Python is not a real multi-thread.

The device server instance and devices naming conventions should take into account the purpose of the devices it
serves (i. e. PyAlarm/rf_slow, for providing alarm/rf/slow_alarms device, which serves a slow alarms).

8.4 Timing configuration

As it was discussed during the training, it is recommended to have at least two PyAlarm devices per subsystem.

One will handle standard alarms (slow); the other will serve fast alarms.

Fig. 8.1: Alarms evaluation cycle

36 Chapter 8. Deployment and configuration

PANIC training materials, Release 0.9

8.4.1 Standard PyAlarm timing configuration

Most of the alarms will not require fast evaluations (are not based on short signals). For such alarms, the evaluation
property may be set to 10 seconds or even more. The recommended settings are the following:

• EvalTimeout: 300, this will allow for slower devices,

• AlarmThreshold: 3, this will suppress transient communication problems,

• PollingPeriod: 10,

• Reminder: 3600,

• AutoReset: 3600, this may be adjusted according to control room practices. Having alarm auto-reset after one
hour is a safe option if there is always an operator who looks from time to time on the alarm list dashboard,
so none of the “mysteriously-self-healed” alarms is missed. If it is not the case, the AutoReset time shall be
increased to make sure that none of the alarms will be missed without being noticed.

8.4.2 Fast PyAlarm timing configuration

PyAlarm devices providing alarms based on quickly changing values (some RF alarms) may need more often formulas
evaluation to detect shorter/transient events.

• EvalTimeout: 10,

• AlarmThreshold: 1,

• PollingPeriod: 0.1,

• Reminder: 3600,

• AutoReset: 3600,

8.4.3 Startup

The alarms evaluation should start when all subsystems are already running. It is then recommended to start PyAlarm
instances at Run Level 5.

Then, use the following property settings:

• Enabled: 300,

• StartupDelay: 120,

This way, the alarms will not be evaluated for two minutes preventing alarms from transient states. Then for 5
minutes, there will not be any notifications about alarms, except view on the PANIC GUI. Those settings will prevent
notifications’ flood for operators during startup. Usually, during the startup operators are in the control room, and they
have access to the Panic GUI to see activated alarms.

8.4. Timing configuration 37

PANIC training materials, Release 0.9

8.5 Exceptions handling configuration

At the beginning, it is recommended to set the exception related properties as follows:

• RethrowState: True,

• RethrowAttribute: True,

• IgnoreExceptions: True,

This will make sure that alarm will be triggered if there are issues with reading of any involved attribute.

8.6 UseTaurs

It is recommended to set the UseTaurus property to True for all PyAlarm devices. This will enable events for
retrieving attributes values, so the formula’s evaluation will not be slowed down by attributes reading.

8.7 Naming conventions

It is recommended to have a defined naming convention for:

• PyAlarm device servers instances

• PyAlarm device instances

• Alarms

The proposed instance name is: PyAlarm/{subs}{#}, where

• {subs} is an abbreviation of a subsystem to which the server is related (rf, vac, . . .),

• {#} is one digit sequence number.

The suggested device naming schema is alarm/{subs}/{standard/fast}{#}, where:

• {subs} is an abbreviation of a subsystem to which the device relates (rf, vac, . . .),

• {standard/fast} is one of standard or fast to denote the device timing configuration,

• {#} is one digit sequence Number.

Alarms’ names may follow the following convention: {SYS}_{SUBS}_{OBJECTORVALUE}_{ISSUE},
i.w.: SR_VAC_PRESSURE_DROP, I_RF_CAVITYTEMERATUR_OVERFLOW, I_RF_MODULATOR_FAILURE,
BL01_VAC_FRONTEND_CLOSED

38 Chapter 8. Deployment and configuration

CHAPTER

NINE

PANIC GUI

Table of Contents

• PANIC GUI

– PANIC GUI description and goals

– GUI overview

* PhoneBook

* Trend

* Advanced configuration

* Alarm History Viewer

* Alarm Calculator

· Attribute Finder

* Alarm Panel

– Alarm edit/details panel

– Configuration of the alarms list

* Sorting

* Filters

* Show active alarms

– Context menu

* Alarm Details

* Preview Formula/Values

* View History

* Change Priority

* Acknowledge/Renounce Alarm

* Disable/Enable Alarm

* Edit Alarm

* Clone Alarm

* Delete Alarm

39

PANIC training materials, Release 0.9

* Advanced Config

* TestDevice

– Alarms management

* Create new alarm

– Top bar menu

* Import and Export from CSV file

* Tools

9.1 PANIC GUI description and goals

PANIC GUI allows the user to define configurations of the alarms. Those alarms can be saved in Tango Database and
modified. PANIC GUI is gathering and managing information from all PyAlarm devices.

9.2 GUI overview

Application top bar has shortcuts to most popular options that are helpful in managing the alarms

9.2.1 PhoneBook

The Phonebook is tool to easy add, manage and remove receivers for alarms. Each line define one named receiver, for
example:

%JAN KOWALSKI:jan.kowalski@s2innovation.com;0048123456789

After clicking on PhoneBook icon

User can see window to add, edit or remove receivers

After clicking on Add button user can add new receiver

9.2.2 Trend

After clicking on Trend icon

User can see Trend window of provided device attribute

9.2.3 Advanced configuration

After clicking on Advanced Configuration icon

User can select PyAlarm device and manage configuration

40 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.1: Main view of PANIC GUI
9.2. GUI overview 41

PANIC training materials, Release 0.9

Fig. 9.2: PANIC GUI overview

Fig. 9.3: PANIC GUI, PhoneBook

42 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.4: Phonebook main window

Fig. 9.5: Phonebook add resceiver

9.2. GUI overview 43

PANIC training materials, Release 0.9

Fig. 9.6: PANIC GUI, Trend

Fig. 9.7: Alarms trend main view

Fig. 9.8: ANIC GUI, Advanced Configuration

44 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.9: PyAlarm Device Configuration

9.2. GUI overview 45

PANIC training materials, Release 0.9

9.2.4 Alarm History Viewer

After clicking on Alarm History Viewer icon

Fig. 9.10: PANIC GUI, Alarm History Viewer

User can see all available alarms history or select alarm and check history of chosen alarm.

After clicking on number in first column and next Open Snapshot button, user can see context of selected Snapshot.

9.2.5 Alarm Calculator

After clicking on Alarm Calculator icon

User can create and validate formula of the alarm.

After clicking on Evaluate button user can validate to verify that provided formula will trigger the alarm.

Attribute Finder

After clicking on Attribute Finder icon

User can search for devices and attributes using wildcards

After clicking on button in Archiving column user can verify that selected attribute is archived.

9.2.6 Alarm Panel

After clicking on Alarm Panel icon

User can open window showing state of configured alarms.

9.3 Alarm edit/details panel

After double-click on selected item on alarms list

User can check details of an alarm.

After clicking on Edit button user can edit selected alarm

User can e.g. modify formula of selected alarm

After clicking on Evaluate button user can verify provided formula

After clicking on Save button user can store modification.

46 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.11: Alarm History Viewer

9.3. Alarm edit/details panel 47

PANIC training materials, Release 0.9

Fig. 9.12: Snapshot of selected alarm context

Fig. 9.13: PANIC GUI, Alarm Calculator

48 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.14: Alarm Formula Preview

9.3. Alarm edit/details panel 49

PANIC training materials, Release 0.9

Fig. 9.15: Evaluate of alarm formula

Fig. 9.16: PANIC GUI, Attribute Finder

50 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.17: Attribute Finder

Fig. 9.18: Verify attributes archived

Fig. 9.19: PANIC GUI, Alarm Panel

9.3. Alarm edit/details panel 51

PANIC training materials, Release 0.9

Fig. 9.20: PANIC Alarm Panel

52 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.21: Alarms list

9.3. Alarm edit/details panel 53

PANIC training materials, Release 0.9

Fig. 9.22: PANIC GUI, view alarm details

54 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.23: Edit alarm

9.3. Alarm edit/details panel 55

PANIC training materials, Release 0.9

Fig. 9.24: Modify formula

56 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.25: Evaluate formula

9.3. Alarm edit/details panel 57

PANIC training materials, Release 0.9

9.4 Configuration of the alarms list

User can customize list of presented alarms list.

Fig. 9.26: Configuration of presented alarms

9.4.1 Sorting

After clicking on drop-down list

User can sort alarms by:

• State

• UserFilters

• Priority

• Devices

• PreCondition

• Annunciator

• Receivers

• Domain

• Family

58 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.27: Sorting alarms

9.4. Configuration of the alarms list 59

PANIC training materials, Release 0.9

Fig. 9.28: State

Fig. 9.29: UserFilters

60 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.30: Priority

Fig. 9.31: Devices

9.4. Configuration of the alarms list 61

PANIC training materials, Release 0.9

Fig. 9.32: PreCondition

Fig. 9.33: Annunciator

Fig. 9.34: Receivers

62 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.35: Domain

Fig. 9.36: Family

9.4. Configuration of the alarms list 63

PANIC training materials, Release 0.9

9.4.2 Filters

After clicking on filter text box:

Fig. 9.37: Filters

User can create quick filter and save it.

9.4.3 Show active alarms

After clicking on Show Active Only checkbox.

User can see only active alarms.

64 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.38: Show active alarms

9.5 Context menu

After right click on selected alarm on the list

User can choose:

• See Alarm Details

• Preview Formula/Values

• View History

• Change Priority

• Reset Alarm(s)

• Acknowledge/Renounce Alarm(s)

• Disable/Enable Alarm(s)

• Edit Alarm

• Clone Alarm

• Delete Alarm

• Advanced Config

• TestDevice

9.5. Context menu 65

PANIC training materials, Release 0.9

Fig. 9.39: Alarm details

66 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

9.5.1 Alarm Details

Fig. 9.40: PANIC GUI, view alarm details

9.5. Context menu 67

PANIC training materials, Release 0.9

9.5.2 Preview Formula/Values

Fig. 9.41: Preview Formula/Values

68 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.42: No archivization

Fig. 9.43: Alarm History

9.5. Context menu 69

PANIC training materials, Release 0.9

Fig. 9.44: Change Priority

70 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.45: Renounce Alarm

Fig. 9.46: Disable Alarm

9.5. Context menu 71

PANIC training materials, Release 0.9

Fig. 9.47: Edit Alarm

Fig. 9.48: Clone Alarm

72 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

9.5.3 View History

9.5.4 Change Priority

9.5.5 Acknowledge/Renounce Alarm

9.5.6 Disable/Enable Alarm

9.5.7 Edit Alarm

9.5.8 Clone Alarm

9.5.9 Delete Alarm

Fig. 9.49: Delete Alarm

9.5.10 Advanced Config

9.5.11 TestDevice

9.6 Alarms management

Using buttons at the bottom a user can manage alarms.

9.6.1 Create new alarm

After clicking New button user can configure new alarm.

9.7 Top bar menu

9.7.1 Import and Export from CSV file

Application allows to import or export to CSV file configuration of alarms

Format CSV file of CSV file must contain columns:

• TAG

• DEVICE DESCRIPTION

9.6. Alarms management 73

PANIC training materials, Release 0.9

Fig. 9.50: Advanced Config

74 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.51: Test Device

9.7. Top bar menu 75

PANIC training materials, Release 0.9

Fig. 9.52: Alarm details

76 Chapter 9. PANIC GUI

PANIC training materials, Release 0.9

Fig. 9.53: New alarm

Fig. 9.54: PANIC GUI, File menu

9.7. Top bar menu 77

PANIC training materials, Release 0.9

• SEVERITY

• RECEIVERS

• FORMULA

The separtaion between CSV fields shall be a tab character (t). This is due to an alarm configuration contain semi-
colons(;) and comas (,) which would otherwise interfere with CSV structure.

Fig. 9.55: CSV file example

9.7.2 Tools

PANIC GUI has included many tools to help with configuration of new alarm or edit created.

Fig. 9.56: PANIC GUI, Tools menu

78 Chapter 9. PANIC GUI

CHAPTER

TEN

ALARM PHILOSOPHY

10.1 Alarm philosophy

The alarm philosophy shall provide criteria, definitions, principles, and responsibilities for all of the alarm management
lifecycle stages. It facilitates:

• consistency across the alarm system,

• consistency with risk management goals and objectives,

• good engineering practices,

• alarm system that supports an effective operator response.

10.1.1 Alarm philosophy contents

The IEC62682 standard asks for the following specification in an alarm philosophy:

• Purpose of alarm system,

• Definitions, References,

• Roles and responsibilities

• Principles of alarm design,

• Guidance for rationalisation of alarms list,

• Alarm class definitions (types of alarms, priorities, handling principles for a class),

• Alarm history preservation,

• Highly managed alarms handling (the alarms which require special procedures, i.e. due to law requirements),

• HMI/GUI design principles (colouring, symbols, naming conventions),

• Prioritisation method,

• Performance monitoring,

• Maintenance guidance,

• Testing requirements,

• Alarm documentation requirements,

• Implementation guidance,

• Management of change,

• Training,

79

PANIC training materials, Release 0.9

• Related site procedures,

• Site-specific requirements,

• Audit (frequency, topics),

10.2 Alarm system requirements specification (ASRS)

The ASRS provides functional requirements specification. It is the document developed as part of the alarm philosophy
stage and implementation. Its purpose is to detail the functional requirements expected of the control system. On all
development stages, the ASRS shall be consistent with the alarm philosophy.

The ASRS contains a specification for some of the following:

• alarm attributes,

• alarm HMI (i.e. PANIC GUI),

• alarm communication protocol (i.e. Tango),

• alarm record logging (i.e. SNAP, elasticsearch, text files),

• alarm record analysis,

• alarm priorities available,

• visible annunciation functionality (colours, symbols),

• audible alarm annunciation functionality,

• alarm summary display functionality,

• alarm shelving, suppression,

• alarm configuration functionality

• alarm log capabilities,

• alarm monitoring and assessment functionality,

• alarm auditing functionality,

• advanced alarming functionality.

The ASRS shall be compared with capabilities if the control system / Alarm Management System tool selected.
If specific criteria are not met, either ASRS shall be updated (providing that it is still compatible with the alarm
philosophy) or the control system / the alarm system tools shall be corrected.

Each alarm system requirements from ASRS should be tested before the operation stage.

80 Chapter 10. Alarm philosophy

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

81

	PANIC ALARM SYSTEM
	References
	Architecture
	Alarm states

	PyAlarm Properties Quick Reference
	Global Properties
	Class Properties
	Device Properties

	Annunciators/Recivers
	Actions
	PhoneBook
	Global Recivers

	Notes on alarms formulas
	Tango names resolving
	Special Keys/Macros

	Integration with external systems
	Mail
	SMS
	A Text Talker
	eLog or other web-based systems
	Knowledge database

	MAX-IV ELK stack application
	A demo of MAX-IV deployment
	MAX-IV app description
	Deployment

	PANIC source-code
	alarmapi.py
	properties.py
	PyAlarm.py

	Deployment and configuration
	PyAlarm dependencies
	PANIC GUI dependencies
	Number of devices/device servers
	Timing configuration
	Exceptions handling configuration
	UseTaurs
	Naming conventions

	PANIC GUI
	PANIC GUI description and goals
	GUI overview
	Alarm edit/details panel
	Configuration of the alarms list
	Context menu
	Alarms management
	Top bar menu

	Alarm philosophy
	Alarm philosophy
	Alarm system requirements specification (ASRS)

	Indices and tables

